| Chunk |
|---|
| Conflicting content |
|---|
*/
public class OldTree extends AbstractClassifier {
static final long serialVersionUID = 56394564395635672L;
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
public final Node node;
private Set |
| Solution content |
|---|
*/
public class OldTree extends AbstractClassifier {
static final long serialVersionUID = 56394564395635672L;
public final OldNode oldNode;
private Set |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Attribute |
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public double getProbability(AttributesMap attributes, Serializable classification) {
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
Leaf leaf = node.getLeaf(attributes);
return leaf.getProbability(classification);
=======
OldLeaf oldLeaf = oldNode.getLeaf(attributes);
return oldLeaf.getProbability(classification);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java
}
@Override |
| Solution content |
|---|
@Override
public double getProbability(AttributesMap attributes, Serializable classification) {
OldLeaf oldLeaf = oldNode.getLeaf(attributes);
return oldLeaf.getProbability(classification);
}
@Override |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Return statement |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public double getProbabilityWithoutAttributes(AttributesMap attributes, Serializable classification, Set |
| Solution content |
|---|
@Override
public double getProbabilityWithoutAttributes(AttributesMap attributes, Serializable classification, Set |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Return statement |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public PredictionMap predict(AttributesMap attributes) {
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
Leaf leaf = node.getLeaf(attributes);
=======
OldLeaf oldLeaf = oldNode.getLeaf(attributes);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java
Map |
| Solution content |
|---|
@Override
public PredictionMap predict(AttributesMap attributes) {
OldLeaf oldLeaf = oldNode.getLeaf(attributes);
Map |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public Serializable getClassificationByMaxProb(AttributesMap attributes) {
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
Leaf leaf = node.getLeaf(attributes);
return leaf.getBestClassification();
=======
OldLeaf oldLeaf = oldNode.getLeaf(attributes);
return oldLeaf.getBestClassification();
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java
}
@Override |
| Solution content |
|---|
@Override
public Serializable getClassificationByMaxProb(AttributesMap attributes) {
OldLeaf oldLeaf = oldNode.getLeaf(attributes);
return oldLeaf.getBestClassification();
}
@Override |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Return statement |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
final OldTree oldTree = (OldTree) o;
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
if (!node.equals(tree.node)) return false;
=======
if (!oldNode.equals(oldTree.oldNode)) return false;
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java
return true;
} |
| Solution content |
|---|
final OldTree oldTree = (OldTree) o;
if (!oldNode.equals(oldTree.oldNode)) return false;
return true;
} |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| If statement |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public int hashCode() {
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
return node.hashCode();
=======
return oldNode.hashCode();
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java
}
@Override |
| Solution content |
|---|
@Override
public int hashCode() {
return oldNode.hashCode();
}
@Override |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Return statement |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public String toString() {
StringBuilder dump = new StringBuilder();
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java
node.dump(dump);
=======
oldNode.dump(dump);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java
return dump.toString();
}
} |
| Solution content |
|---|
@Override
public String toString() {
StringBuilder dump = new StringBuilder();
oldNode.dump(dump);
return dump.toString();
}
} |
| File |
|---|
| OldTree.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Chunk |
|---|
| Conflicting content |
|---|
private static final int HARD_MINIMUM_INSTANCES_PER_CATEGORICAL_VALUE = 10;
public static final String MIN_SPLIT_FRACTION = "minSplitFraction";
public static final String EXEMPT_ATTRIBUTES = "exemptAttributes";
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
public static final String IMBALANCE_PENALTY_POWER = "imbalancePenaltyPower";
=======
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java
private OldScorer oldScorer;
private int maxDepth = 5; |
| Solution content |
|---|
private static final int HARD_MINIMUM_INSTANCES_PER_CATEGORICAL_VALUE = 10;
public static final String MIN_SPLIT_FRACTION = "minSplitFraction";
public static final String EXEMPT_ATTRIBUTES = "exemptAttributes";
private OldScorer oldScorer;
private int maxDepth = 5; |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Attribute |
| Chunk |
|---|
| Conflicting content |
|---|
private double minimumScore = 0.00000000000001;
private int minDiscreteAttributeValueOccurances = 0;
private double minSplitFraction = .005;
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
private double imbalancePenaltyPower = 0;
private Set |
| Solution content |
|---|
private double minimumScore = 0.00000000000001;
private int minDiscreteAttributeValueOccurances = 0;
private double minSplitFraction = .005;
private HashSet |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Attribute |
| Method invocation |
| Chunk |
|---|
| Conflicting content |
|---|
copy.attributeIgnoringStrategy = attributeIgnoringStrategy.copy();
copy.fractionOfDataToUseInHoldOutSet = fractionOfDataToUseInHoldOutSet;
copy.minSplitFraction = minSplitFraction;
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
copy.exemptAttributes = exemptAttributes;
copy.imbalancePenaltyPower = imbalancePenaltyPower;
=======
copy.exemptAttributes = Sets.newHashSet(exemptAttributes);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java
return copy;
}
|
| Solution content |
|---|
copy.attributeIgnoringStrategy = attributeIgnoringStrategy.copy();
copy.fractionOfDataToUseInHoldOutSet = fractionOfDataToUseInHoldOutSet;
copy.minSplitFraction = minSplitFraction;
copy.exemptAttributes = Sets.newHashSet(exemptAttributes);
return copy;
}
|
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Other |
| Chunk |
|---|
| Conflicting content |
|---|
if (cfg.containsKey(ORDINAL_TEST_SPLITS))
ordinalTestSplits((Integer) cfg.get(ORDINAL_TEST_SPLITS));
if (cfg.containsKey(EXEMPT_ATTRIBUTES))
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
exemptAttributes((Set |
| Solution content |
|---|
if (cfg.containsKey(ORDINAL_TEST_SPLITS))
ordinalTestSplits((Integer) cfg.get(ORDINAL_TEST_SPLITS));
if (cfg.containsKey(EXEMPT_ATTRIBUTES))
exemptAttributes((HashSet |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Chunk |
|---|
| Conflicting content |
|---|
if (cfg.containsKey(ATTRIBUTE_IGNORING_STRATEGY))
attributeIgnoringStrategy((AttributeIgnoringStrategy) cfg.get(ATTRIBUTE_IGNORING_STRATEGY));
if (cfg.containsKey(IGNORE_ATTR_PROB))
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
ignoreAttributeAtNodeProbability((Double) cfg.get(IGNORE_ATTR_PROB));
if (cfg.containsKey(IMBALANCE_PENALTY_POWER))
imbalancePenaltyPower((Double)cfg.get(IMBALANCE_PENALTY_POWER));
=======
ignoreAttributeAtNodeProbability((Double)cfg.get(IGNORE_ATTR_PROB));
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java
penalizeCategoricalSplitsBySplitAttributeIntrinsicValue(cfg.containsKey(PENALIZE_CATEGORICAL_SPLITS) ? (Boolean) cfg.get(PENALIZE_CATEGORICAL_SPLITS) : true);
}
|
| Solution content |
|---|
if (cfg.containsKey(ATTRIBUTE_IGNORING_STRATEGY))
attributeIgnoringStrategy((AttributeIgnoringStrategy) cfg.get(ATTRIBUTE_IGNORING_STRATEGY));
if (cfg.containsKey(IGNORE_ATTR_PROB))
ignoreAttributeAtNodeProbability((Double)cfg.get(IGNORE_ATTR_PROB));
penalizeCategoricalSplitsBySplitAttributeIntrinsicValue(cfg.containsKey(PENALIZE_CATEGORICAL_SPLITS) ? (Boolean) cfg.get(PENALIZE_CATEGORICAL_SPLITS) : true);
}
|
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| If statement |
| Method invocation |
| Chunk |
|---|
| Conflicting content |
|---|
return split;
}
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
private Node growTree(Branch parent, List |
| Solution content |
|---|
return split;
}
private OldNode growTree(OldBranch parent, List |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
private Pair createTwoClassCategoricalNode(OldNode parent, final String attribute, final Iterable |
| Solution content |
|---|
private Pair createTwoClassCategoricalNode(OldNode parent, final String attribute, final Iterable |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Comment |
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
return informationValue;
}
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
private Pair createNClassCategoricalNode(Node parent, final String attribute,
=======
private Pair createNClassCategoricalNode(OldNode parent, final String attribute,
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java
final Iterable |
| Solution content |
|---|
return informationValue;
}
private Pair createNClassCategoricalNode(OldNode parent, final String attribute,
final Iterable |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
continue;
}
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
double thisScore = scorer.scoreSplit(inClassificationCounts, outClassificationCounts);
if (imbalancePenaltyPower!=0) {
thisScore/=Math.pow(Math.min(inClassificationCounts.getTotal(), outClassificationCounts.getTotal()), imbalancePenaltyPower);
}
=======
double thisScore = oldScorer.scoreSplit(inClassificationCounts, outClassificationCounts);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java
if (thisScore > bestScore) {
bestScore = thisScore;
bestThreshold = threshold; |
| Solution content |
|---|
continue;
}
double thisScore = oldScorer.scoreSplit(inClassificationCounts, outClassificationCounts);
if (thisScore > bestScore) {
bestScore = thisScore;
bestThreshold = threshold; |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| If statement |
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
return null;
}
double penalizedBestScore = bestScore/getIntrinsicValueOfNumericAttribute();
<<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java
return Pair.with(new NumericBranch(parent, attribute, bestThreshold, probabilityOfBeingInInset), penalizedBestScore);
=======
return Pair.with(new OldNumericBranch(parent, attribute, bestThreshold, probabilityOfBeingInInset), penalizedBestScore);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java
}
public static class AttributeCharacteristics { |
| Solution content |
|---|
return null;
}
double penalizedBestScore = bestScore/getIntrinsicValueOfNumericAttribute();
return Pair.with(new OldNumericBranch(parent, attribute, bestThreshold, probabilityOfBeingInInset), penalizedBestScore);
}
public static class AttributeCharacteristics { |
| File |
|---|
| OldTreeBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Return statement |
| Chunk |
|---|
| Conflicting content |
|---|
return new PredictionMapResults(results);
}
<<<<<<< HEAD
public static void sortTrainingInstancesByTime(List trainingData, final DateTimeExtractor |
| Solution content |
|---|
return new PredictionMapResults(results);
}
public static |
| File |
|---|
| Utils.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
/** * Created by ian on 5/29/14. */ <<<<<<< HEAD public class SplitOnAttributeClassifierBuilder |
| Solution content |
|---|
/** * Created by ian on 5/29/14. */ public class SplitOnAttributeClassifierBuilder> implements PredictiveModelBuilder |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Attribute |
| Class signature |
| Method invocation |
| Chunk |
|---|
| Conflicting content |
|---|
private final Integer defaultGroup;
//TODO: this method should not have any parameters.
<<<<<<< HEAD
public SplitOnAttributeClassifierBuilder(String attributeKey, Collection |
| Solution content |
|---|
private final Integer defaultGroup;
//TODO: this method should not have any parameters.
public SplitOnAttributeClassifierBuilder(String attributeKey, Collection |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
}
@Override
<<<<<<< HEAD
public SplitOnAttributeClassifier buildPredictiveModel(final Iterable |
| Solution content |
|---|
}
@Override
public SplitOnAttributeClassifier buildPredictiveModel(final Iterable trainingData) {
//split by groupId
Map |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Comment |
| For statement |
| Method invocation |
| Method signature |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
}
<<<<<<< HEAD
private Map |
| Solution content |
|---|
}
private Map |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Comment |
| For statement |
| Method invocation |
| Method signature |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
continue;
}
<<<<<<< HEAD
List |
| Solution content |
|---|
continue;
}
List trainingDataForGroup = splitTrainingData.get(groupId);
if (trainingDataForGroup == null) {
trainingDataForGroup = Lists.newArrayList();
splitTrainingData.put(groupId, trainingDataForGroup); |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
* Add data to each split data set based on the desired cross data values. Maintain the same ratio of classifications in the split set by
* selecting that ratio from outside sets. Only keep the attributes in the supporting instances that are in the white list
* */
<<<<<<< HEAD
private void crossPollinateData(Map |
| Solution content |
|---|
* Add data to each split data set based on the desired cross data values. Maintain the same ratio of classifications in the split set by
* selecting that ratio from outside sets. Only keep the attributes in the supporting instances that are in the white list
* */
private void crossPollinateData(Map |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
for (Integer presentGroup : splitModelGroups.keySet()) {
<<<<<<< HEAD
List |
| Solution content |
|---|
for (Integer presentGroup : splitModelGroups.keySet()) {
List dataForPresentGroup = splitTrainingData.get(presentGroup);
SplitModelGroup splitModelGroup = splitModelGroups.get(presentGroup);
Map |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Other |
| Chunk |
|---|
| Conflicting content |
|---|
Map |
| Solution content |
|---|
Map |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Other |
| Chunk |
|---|
| Conflicting content |
|---|
}
}
<<<<<<< HEAD
private List |
| Solution content |
|---|
}
}
private List filterToRequestedNumber(List input, long requestedNumInstances) {
//TODO: consider allowing it to get the most recently dated instances.
/** |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
=======
* this method obtains a random sublist of approximately m elements from a list of n elements in order m time.
*/
<<<<<<< HEAD
List |
| Solution content |
|---|
* this method obtains a random sublist of approximately m elements from a list of n elements in order m time.
*/
List output = new ArrayList<>((int) requestedNumInstances);
double currentSizeToReducedSizeRatio = (1.0 * input.size()) / requestedNumInstances;
int baseIncrement = (int) Math.floor(currentSizeToReducedSizeRatio);
double randomIncrementProbability = currentSizeToReducedSizeRatio - baseIncrement; |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Other |
| Chunk |
|---|
| Conflicting content |
|---|
return output;
}
<<<<<<< HEAD
private boolean shouldAddInstance(Serializable attributeValue, T instance, ClassificationCounter crossDataCount, double targetCount) {
=======
private boolean shouldAddInstance(Serializable attributeValue, I instance, ClassificationCounter crossDataCount, double targetCount) {
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85
//if the model's split valaue is not the same as the instance's split value (avoids redundancy)
if (!attributeValue.equals(instance.getAttributes().get(attributeKey))) {
//if we still need instances of a particular classification |
| Solution content |
|---|
return output;
}
private boolean shouldAddInstance(Serializable attributeValue, I instance, ClassificationCounter crossDataCount, double targetCount) {
//if the model's split valaue is not the same as the instance's split value (avoids redundancy)
if (!attributeValue.equals(instance.getAttributes().get(attributeKey))) {
//if we still need instances of a particular classification |
| File |
|---|
| SplitOnAttributeClassifierBuilder.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method signature |
| Chunk |
|---|
| Conflicting content |
|---|
@Override
public Serializable getClassificationByMaxProb(AttributesMap attributes) {
Map |
| Solution content |
|---|
@Override
public Serializable getClassificationByMaxProb(AttributesMap attributes) {
Map |
| File |
|---|
| RandomDecisionForest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| For statement |
| If statement |
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
private void findBestValueForField(String field) {
FieldLosses losses = new FieldLosses();
<<<<<<< HEAD
FieldValueRecommender fieldValueRecommender = valuesToTest.get(field);
=======
FieldValueRecommender fieldValueRecommender = fieldsToOptimize.get(field);
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85
if (fieldValueRecommender.getValues().size() == 1) {
return;
} |
| Solution content |
|---|
private void findBestValueForField(String field) {
FieldLosses losses = new FieldLosses();
FieldValueRecommender fieldValueRecommender = fieldsToOptimize.get(field);
if (fieldValueRecommender.getValues().size() == 1) {
return;
} |
| File |
|---|
| PredictiveModelOptimizer.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
return;
}
//bestConfig is not actually bestConfig inth for loop
<<<<<<< HEAD
for (Object value : fieldValueRecommender.getValues()) {
//TODO: make so it does not repeat a conf already seen in present iteration (e.g. keep a set of configs)
if (bestConfig.get(field).equals(value)) {
continue;
=======
for (Serializable value : fieldValueRecommender.getValues()) {
//TODO: make so it does not repeat a conf already seen in present iteration (e.g. keep a set of configs)
if (bestConfig.get(field).equals(value)) {
continue; //safe to continue bc everything else about the config is the same.
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85
}
bestConfig.put(field, value);
losses.addFieldLoss(value, crossValidator.getLossForModel(bestConfig)); |
| Solution content |
|---|
return;
}
//bestConfig is not actually bestConfig inth for loop
for (Serializable value : fieldValueRecommender.getValues()) {
//TODO: make so it does not repeat a conf already seen in present iteration (e.g. keep a set of configs)
if (bestConfig.get(field).equals(value)) {
continue; //safe to continue bc everything else about the config is the same.
}
bestConfig.put(field, value);
losses.addFieldLoss(value, crossValidator.getLossForModel(bestConfig)); |
| File |
|---|
| PredictiveModelOptimizer.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Comment |
| Continue statement |
| For statement |
| If statement |
| Chunk |
|---|
| Conflicting content |
|---|
import org.junit.Test; import quickml.data.AttributesMap; import quickml.data.ClassifierInstance; <<<<<<< HEAD import quickml.supervised.classifier.Classifier; import quickml.supervised.classifier.decisionTree.Scorer; import quickml.supervised.classifier.decisionTree.TreeBuilder; import quickml.supervised.classifier.decisionTree.scorers.GiniImpurityScorer; import quickml.supervised.classifier.decisionTree.scorers.MSEScorer; import quickml.supervised.classifier.decisionTree.scorers.SplitDiffScorer; import quickml.supervised.classifier.decisionTree.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; import quickml.supervised.classifier.randomForest.RandomForestBuilder; ======= import quickml.supervised.tree.decisionTree.scorers.*; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85 import quickml.supervised.crossValidation.ClassifierLossChecker; import quickml.supervised.crossValidation.CrossValidator; import quickml.supervised.crossValidation.data.FoldedData; |
| Solution content |
|---|
import org.junit.Test; import quickml.data.AttributesMap; import quickml.data.ClassifierInstance; import quickml.supervised.tree.decisionTree.scorers.*; import quickml.supervised.crossValidation.ClassifierLossChecker; import quickml.supervised.crossValidation.CrossValidator; import quickml.supervised.crossValidation.data.FoldedData; |
| File |
|---|
| BenchmarkTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Import |
| Chunk |
|---|
| Conflicting content |
|---|
package quickml.supervised.classifier; <<<<<<< HEAD:src/test/java/quickml/supervised/classifier/ClassifiersTest.java import com.beust.jcommander.internal.Sets; ======= >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/test/java/quickml/supervised/classifier/StaticBuildersTest.java import org.javatuples.Pair; import org.slf4j.Logger; import org.slf4j.LoggerFactory; |
| Solution content |
|---|
package quickml.supervised.classifier; import org.javatuples.Pair; import org.slf4j.Logger; import org.slf4j.LoggerFactory; |
| File |
|---|
| ClassifiersTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Import |
| Chunk |
|---|
| Conflicting content |
|---|
import quickml.supervised.classifier.downsampling.DownsamplingClassifier; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; <<<<<<< HEAD:src/test/java/quickml/supervised/classifier/ClassifiersTest.java import java.util.Arrays; ======= import java.io.Serializable; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/test/java/quickml/supervised/classifier/StaticBuildersTest.java import java.util.List; import java.util.Map; import java.util.Set; |
| Solution content |
|---|
import quickml.supervised.classifier.downsampling.DownsamplingClassifier; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; import java.io.Serializable; import java.util.List; import java.util.Map; |
| File |
|---|
| ClassifiersTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Import |
| Chunk |
|---|
| Conflicting content |
|---|
List |
| Solution content |
|---|
OnespotDateTimeExtractor dateTimeExtractor = new OnespotDateTimeExtractor();
Pair |
| File |
|---|
| ClassifiersTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
import quickml.data.AttributesMap; import quickml.data.ClassifierInstance; import quickml.data.OnespotDateTimeExtractor; <<<<<<< HEAD:src/test/java/quickml/supervised/crossValidation/attributeImportance/AttributeImportanceFinderTest.java import quickml.supervised.InstanceLoader; import quickml.supervised.classifier.Classifier; import quickml.supervised.classifier.decisionTree.Tree; import quickml.supervised.classifier.decisionTree.TreeBuilder; import quickml.supervised.classifier.decisionTree.scorers.GiniImpurityScorer; import quickml.supervised.classifier.decisionTree.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; import quickml.supervised.classifier.randomForest.RandomForestBuilder; import quickml.supervised.crossValidation.ClassifierLossChecker; import quickml.supervised.crossValidation.CrossValidator; import quickml.supervised.crossValidation.data.OutOfTimeData; ======= import quickml.InstanceLoader; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/test/java/quickml/supervised/crossValidation/attributeImportance/AttributeImportanceFinderIntegrationTest.java import quickml.supervised.crossValidation.lossfunctions.ClassifierLogCVLossFunction; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; import quickml.supervised.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; |
| Solution content |
|---|
import quickml.data.ClassifierInstance; import quickml.data.OnespotDateTimeExtractor; import quickml.InstanceLoader; import quickml.supervised.crossValidation.lossfunctions.ClassifierLogCVLossFunction; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; import quickml.supervised.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; |
| File |
|---|
| AttributeImportanceFinderIntegrationTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Import |
| Chunk |
|---|
| Conflicting content |
|---|
@Test
public void testAttributeImportanceFinder() throws Exception {
<<<<<<< HEAD:src/test/java/quickml/supervised/crossValidation/attributeImportance/AttributeImportanceFinderTest.java
AttributeImportanceFinder |
| Solution content |
|---|
@Test
public void testAttributeImportanceFinder() throws Exception {
System.out.println("\n \n \n new attrImportanceTest");
DecisionTreeBuilder |
| File |
|---|
| AttributeImportanceFinderIntegrationTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Other |
| Chunk |
|---|
| Conflicting content |
|---|
TreeBuilderTestUtils.serializeDeserialize(downsamplingClassifier);
<<<<<<< HEAD:src/test/java/quickml/supervised/classifier/downsampling/DownsamplingClassifierBuilderTest.java
RandomForest randomForest = (RandomForest) downsamplingClassifier.wrappedClassifier;
final List |
| Solution content |
|---|
TreeBuilderTestUtils.serializeDeserialize(downsamplingClassifier);
RandomDecisionForest randomDecisionForest = (RandomDecisionForest) downsamplingClassifier.wrappedClassifier;
final List |
| File |
|---|
| DownsamplingClassifierBuilderTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Cast expression |
| Method invocation |
| Variable |
| Chunk |
|---|
| Conflicting content |
|---|
@Before
public void setUp() throws Exception {
List |
| Solution content |
|---|
@Before
public void setUp() throws Exception {
List |
| File |
|---|
| PredictiveModelOptimizerIntegrationTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Comment |
| Chunk |
|---|
| Conflicting content |
|---|
CompositeAttributeIgnoringStrategy compositeAttributeIgnoringStrategy = new CompositeAttributeIgnoringStrategy(Arrays.asList(
new IgnoreAttributesWithConstantProbability(0.7), new IgnoreAttributesInSet(attributesToIgnore, probabilityOfDiscardingFromAttributesToIgnore)
));
<<<<<<< HEAD
config.put(ATTRIBUTE_IGNORING_STRATEGY, new FixedOrderRecommender(new IgnoreAttributesWithConstantProbability(0.7)));//, compositeAttributeIgnoringStrategy ));
config.put(NUM_TREES, new MonotonicConvergenceRecommender(asList(8), 0.02));
config.put(MAX_DEPTH, new FixedOrderRecommender(8));//, 16));//Integer.MAX_VALUE, 2, 3, 5, 6, 9));
config.put(MIN_SCORE, new FixedOrderRecommender(0.00000000000001));//, Double.MIN_VALUE, 0.0, 0.000001, 0.0001, 0.001, 0.01, 0.1));
config.put(MIN_OCCURRENCES_OF_ATTRIBUTE_VALUE, new FixedOrderRecommender(11));//;, 16, 30 ));
config.put(MIN_LEAF_INSTANCES, new FixedOrderRecommender(20));//, 40));
config.put(SCORER, new FixedOrderRecommender(new GiniImpurityScorer()));//, new InformationGainScorer())), ;
config.put(DEGREE_OF_GAIN_RATIO_PENALTY, new FixedOrderRecommender(1.0));//, 0.75, .5 ));
config.put(MIN_SPLIT_FRACTION, new FixedOrderRecommender(0.001));// 0.25, .5 ));
// config.put(EXEMPT_ATTRIBUTES, new FixedOrderRecommender(exemptAttributes));
config.put(IMBALANCE_PENALTY_POWER, new FixedOrderRecommender(0.0, 1.0, 2.0));
=======
config.put(ATTRIBUTE_IGNORING_STRATEGY.name(), new FixedOrderRecommender(new IgnoreAttributesWithConstantProbability(0.7), compositeAttributeIgnoringStrategy ));
config.put(NUM_TREES.name(), new MonotonicConvergenceRecommender(asList(20)));
config.put(MAX_DEPTH.name(), new FixedOrderRecommender( 4, 8, 16));//Integer.MAX_VALUE, 2, 3, 5, 6, 9));
config.put(MIN_SCORE.name(), new FixedOrderRecommender(0.00000000000001));//, Double.MIN_VALUE, 0.0, 0.000001, 0.0001, 0.001, 0.01, 0.1));
config.put(ATTRIBUTE_VALUE_THRESHOLD_OBSERVATIONS.name(), new FixedOrderRecommender(2, 11, 16, 30 ));
config.put(MIN_LEAF_INSTANCES.name(), new FixedOrderRecommender(0, 20, 40));
config.put(SCORER_FACTORY.name(), new FixedOrderRecommender(new PenalizedInformationGainScorerFactory(), new GRPenalizedGiniImpurityScorerFactory()));
config.put(DEGREE_OF_GAIN_RATIO_PENALTY.name(), new FixedOrderRecommender(1.0, 0.75, .5 ));
>>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85
return config;
}
|
| Solution content |
|---|
CompositeAttributeIgnoringStrategy compositeAttributeIgnoringStrategy = new CompositeAttributeIgnoringStrategy(Arrays.asList(
new IgnoreAttributesWithConstantProbability(0.7), new IgnoreAttributesInSet(attributesToIgnore, probabilityOfDiscardingFromAttributesToIgnore)
));
config.put(ATTRIBUTE_IGNORING_STRATEGY.name(), new FixedOrderRecommender(new IgnoreAttributesWithConstantProbability(0.7), compositeAttributeIgnoringStrategy ));
config.put(NUM_TREES.name(), new MonotonicConvergenceRecommender(asList(20)));
config.put(MAX_DEPTH.name(), new FixedOrderRecommender( 4, 8, 16));//Integer.MAX_VALUE, 2, 3, 5, 6, 9));
config.put(MIN_SCORE.name(), new FixedOrderRecommender(0.00000000000001));//, Double.MIN_VALUE, 0.0, 0.000001, 0.0001, 0.001, 0.01, 0.1));
config.put(ATTRIBUTE_VALUE_THRESHOLD_OBSERVATIONS.name(), new FixedOrderRecommender(2, 11, 16, 30 ));
config.put(MIN_LEAF_INSTANCES.name(), new FixedOrderRecommender(0, 20, 40));
config.put(SCORER_FACTORY.name(), new FixedOrderRecommender(new PenalizedInformationGainScorerFactory(), new GRPenalizedGiniImpurityScorerFactory()));
config.put(DEGREE_OF_GAIN_RATIO_PENALTY.name(), new FixedOrderRecommender(1.0, 0.75, .5 ));
return config;
}
|
| File |
|---|
| PredictiveModelOptimizerIntegrationTest.java |
| Developer's decision |
|---|
| Version 2 |
| Kind of conflict |
|---|
| Comment |
| Method invocation |