Chunk |
---|
Conflicting content |
---|
*/ public class OldTree extends AbstractClassifier { static final long serialVersionUID = 56394564395635672L; <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java public final Node node; private Set |
Solution content |
---|
*/ public class OldTree extends AbstractClassifier { static final long serialVersionUID = 56394564395635672L; public final OldNode oldNode; private Set |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Attribute |
Method signature |
Chunk |
---|
Conflicting content |
---|
@Override public double getProbability(AttributesMap attributes, Serializable classification) { <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java Leaf leaf = node.getLeaf(attributes); return leaf.getProbability(classification); ======= OldLeaf oldLeaf = oldNode.getLeaf(attributes); return oldLeaf.getProbability(classification); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java } @Override |
Solution content |
---|
@Override public double getProbability(AttributesMap attributes, Serializable classification) { OldLeaf oldLeaf = oldNode.getLeaf(attributes); return oldLeaf.getProbability(classification); } @Override |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Return statement |
Variable |
Chunk |
---|
Conflicting content |
---|
@Override public double getProbabilityWithoutAttributes(AttributesMap attributes, Serializable classification, Set |
Solution content |
---|
@Override public double getProbabilityWithoutAttributes(AttributesMap attributes, Serializable classification, Set |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Return statement |
Chunk |
---|
Conflicting content |
---|
@Override public PredictionMap predict(AttributesMap attributes) { <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java Leaf leaf = node.getLeaf(attributes); ======= OldLeaf oldLeaf = oldNode.getLeaf(attributes); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java Map |
Solution content |
---|
@Override public PredictionMap predict(AttributesMap attributes) { OldLeaf oldLeaf = oldNode.getLeaf(attributes); Map |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
@Override public Serializable getClassificationByMaxProb(AttributesMap attributes) { <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java Leaf leaf = node.getLeaf(attributes); return leaf.getBestClassification(); ======= OldLeaf oldLeaf = oldNode.getLeaf(attributes); return oldLeaf.getBestClassification(); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java } @Override |
Solution content |
---|
@Override public Serializable getClassificationByMaxProb(AttributesMap attributes) { OldLeaf oldLeaf = oldNode.getLeaf(attributes); return oldLeaf.getBestClassification(); } @Override |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Return statement |
Variable |
Chunk |
---|
Conflicting content |
---|
final OldTree oldTree = (OldTree) o; <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java if (!node.equals(tree.node)) return false; ======= if (!oldNode.equals(oldTree.oldNode)) return false; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java return true; } |
Solution content |
---|
final OldTree oldTree = (OldTree) o; if (!oldNode.equals(oldTree.oldNode)) return false; return true; } |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
If statement |
Chunk |
---|
Conflicting content |
---|
@Override public int hashCode() { <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java return node.hashCode(); ======= return oldNode.hashCode(); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java } @Override |
Solution content |
---|
@Override public int hashCode() { return oldNode.hashCode(); } @Override |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Return statement |
Chunk |
---|
Conflicting content |
---|
@Override public String toString() { StringBuilder dump = new StringBuilder(); <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/Tree.java node.dump(dump); ======= oldNode.dump(dump); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTree.java return dump.toString(); } } |
Solution content |
---|
@Override public String toString() { StringBuilder dump = new StringBuilder(); oldNode.dump(dump); return dump.toString(); } } |
File |
---|
OldTree.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Chunk |
---|
Conflicting content |
---|
private static final int HARD_MINIMUM_INSTANCES_PER_CATEGORICAL_VALUE = 10; public static final String MIN_SPLIT_FRACTION = "minSplitFraction"; public static final String EXEMPT_ATTRIBUTES = "exemptAttributes"; <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java public static final String IMBALANCE_PENALTY_POWER = "imbalancePenaltyPower"; ======= >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java private OldScorer oldScorer; private int maxDepth = 5; |
Solution content |
---|
private static final int HARD_MINIMUM_INSTANCES_PER_CATEGORICAL_VALUE = 10; public static final String MIN_SPLIT_FRACTION = "minSplitFraction"; public static final String EXEMPT_ATTRIBUTES = "exemptAttributes"; private OldScorer oldScorer; private int maxDepth = 5; |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Attribute |
Chunk |
---|
Conflicting content |
---|
private double minimumScore = 0.00000000000001; private int minDiscreteAttributeValueOccurances = 0; private double minSplitFraction = .005; <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java private double imbalancePenaltyPower = 0; private Set |
Solution content |
---|
private double minimumScore = 0.00000000000001; private int minDiscreteAttributeValueOccurances = 0; private double minSplitFraction = .005; private HashSet |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Attribute |
Method invocation |
Chunk |
---|
Conflicting content |
---|
copy.attributeIgnoringStrategy = attributeIgnoringStrategy.copy(); copy.fractionOfDataToUseInHoldOutSet = fractionOfDataToUseInHoldOutSet; copy.minSplitFraction = minSplitFraction; <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java copy.exemptAttributes = exemptAttributes; copy.imbalancePenaltyPower = imbalancePenaltyPower; ======= copy.exemptAttributes = Sets.newHashSet(exemptAttributes); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java return copy; } |
Solution content |
---|
copy.attributeIgnoringStrategy = attributeIgnoringStrategy.copy(); copy.fractionOfDataToUseInHoldOutSet = fractionOfDataToUseInHoldOutSet; copy.minSplitFraction = minSplitFraction; copy.exemptAttributes = Sets.newHashSet(exemptAttributes); return copy; } |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Other |
Chunk |
---|
Conflicting content |
---|
if (cfg.containsKey(ORDINAL_TEST_SPLITS)) ordinalTestSplits((Integer) cfg.get(ORDINAL_TEST_SPLITS)); if (cfg.containsKey(EXEMPT_ATTRIBUTES)) <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java exemptAttributes((Set |
Solution content |
---|
if (cfg.containsKey(ORDINAL_TEST_SPLITS)) ordinalTestSplits((Integer) cfg.get(ORDINAL_TEST_SPLITS)); if (cfg.containsKey(EXEMPT_ATTRIBUTES)) exemptAttributes((HashSet |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Chunk |
---|
Conflicting content |
---|
if (cfg.containsKey(ATTRIBUTE_IGNORING_STRATEGY)) attributeIgnoringStrategy((AttributeIgnoringStrategy) cfg.get(ATTRIBUTE_IGNORING_STRATEGY)); if (cfg.containsKey(IGNORE_ATTR_PROB)) <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java ignoreAttributeAtNodeProbability((Double) cfg.get(IGNORE_ATTR_PROB)); if (cfg.containsKey(IMBALANCE_PENALTY_POWER)) imbalancePenaltyPower((Double)cfg.get(IMBALANCE_PENALTY_POWER)); ======= ignoreAttributeAtNodeProbability((Double)cfg.get(IGNORE_ATTR_PROB)); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java penalizeCategoricalSplitsBySplitAttributeIntrinsicValue(cfg.containsKey(PENALIZE_CATEGORICAL_SPLITS) ? (Boolean) cfg.get(PENALIZE_CATEGORICAL_SPLITS) : true); } |
Solution content |
---|
if (cfg.containsKey(ATTRIBUTE_IGNORING_STRATEGY)) attributeIgnoringStrategy((AttributeIgnoringStrategy) cfg.get(ATTRIBUTE_IGNORING_STRATEGY)); if (cfg.containsKey(IGNORE_ATTR_PROB)) ignoreAttributeAtNodeProbability((Double)cfg.get(IGNORE_ATTR_PROB)); penalizeCategoricalSplitsBySplitAttributeIntrinsicValue(cfg.containsKey(PENALIZE_CATEGORICAL_SPLITS) ? (Boolean) cfg.get(PENALIZE_CATEGORICAL_SPLITS) : true); } |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
If statement |
Method invocation |
Chunk |
---|
Conflicting content |
---|
return split; } <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java private Node growTree(Branch parent, List |
Solution content |
---|
return split; } private OldNode growTree(OldBranch parent, List |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Method signature |
Chunk |
---|
Conflicting content |
---|
private Pair createTwoClassCategoricalNode(OldNode parent, final String attribute, final Iterable |
Solution content |
---|
private Pair createTwoClassCategoricalNode(OldNode parent, final String attribute, final Iterable |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Comment |
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
return informationValue; } <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java private Pair createNClassCategoricalNode(Node parent, final String attribute, ======= private Pair createNClassCategoricalNode(OldNode parent, final String attribute, >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java final Iterable |
Solution content |
---|
return informationValue; } private Pair createNClassCategoricalNode(OldNode parent, final String attribute, final Iterable |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method signature |
Chunk |
---|
Conflicting content |
---|
continue; } <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java double thisScore = scorer.scoreSplit(inClassificationCounts, outClassificationCounts); if (imbalancePenaltyPower!=0) { thisScore/=Math.pow(Math.min(inClassificationCounts.getTotal(), outClassificationCounts.getTotal()), imbalancePenaltyPower); } ======= double thisScore = oldScorer.scoreSplit(inClassificationCounts, outClassificationCounts); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java if (thisScore > bestScore) { bestScore = thisScore; bestThreshold = threshold; |
Solution content |
---|
continue; } double thisScore = oldScorer.scoreSplit(inClassificationCounts, outClassificationCounts); if (thisScore > bestScore) { bestScore = thisScore; bestThreshold = threshold; |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
If statement |
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
return null; } double penalizedBestScore = bestScore/getIntrinsicValueOfNumericAttribute(); <<<<<<< HEAD:src/main/java/quickml/supervised/classifier/decisionTree/TreeBuilder.java return Pair.with(new NumericBranch(parent, attribute, bestThreshold, probabilityOfBeingInInset), penalizedBestScore); ======= return Pair.with(new OldNumericBranch(parent, attribute, bestThreshold, probabilityOfBeingInInset), penalizedBestScore); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/main/java/quickml/supervised/PredictiveModelsFromPreviousVersionsToBenchMarkAgainst/OldTreeBuilder.java } public static class AttributeCharacteristics { |
Solution content |
---|
return null; } double penalizedBestScore = bestScore/getIntrinsicValueOfNumericAttribute(); return Pair.with(new OldNumericBranch(parent, attribute, bestThreshold, probabilityOfBeingInInset), penalizedBestScore); } public static class AttributeCharacteristics { |
File |
---|
OldTreeBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Return statement |
Chunk |
---|
Conflicting content |
---|
return new PredictionMapResults(results); } <<<<<<< HEAD public static void sortTrainingInstancesByTime(List trainingData, final DateTimeExtractor |
Solution content |
---|
return new PredictionMapResults(results); } public static |
File |
---|
Utils.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Method signature |
Chunk |
---|
Conflicting content |
---|
/** * Created by ian on 5/29/14. */ <<<<<<< HEAD public class SplitOnAttributeClassifierBuilder |
Solution content |
---|
/** * Created by ian on 5/29/14. */ public class SplitOnAttributeClassifierBuilder> implements PredictiveModelBuilder |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Attribute |
Class signature |
Method invocation |
Chunk |
---|
Conflicting content |
---|
private final Integer defaultGroup; //TODO: this method should not have any parameters. <<<<<<< HEAD public SplitOnAttributeClassifierBuilder(String attributeKey, Collection |
Solution content |
---|
private final Integer defaultGroup; //TODO: this method should not have any parameters. public SplitOnAttributeClassifierBuilder(String attributeKey, Collection |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method signature |
Chunk |
---|
Conflicting content |
---|
} @Override <<<<<<< HEAD public SplitOnAttributeClassifier buildPredictiveModel(final Iterable |
Solution content |
---|
} @Override public SplitOnAttributeClassifier buildPredictiveModel(final Iterable trainingData) { //split by groupId Map |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Comment |
For statement |
Method invocation |
Method signature |
Variable |
Chunk |
---|
Conflicting content |
---|
} <<<<<<< HEAD private Map |
Solution content |
---|
} private Map |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Comment |
For statement |
Method invocation |
Method signature |
Variable |
Chunk |
---|
Conflicting content |
---|
continue; } <<<<<<< HEAD List |
Solution content |
---|
continue; } List trainingDataForGroup = splitTrainingData.get(groupId); if (trainingDataForGroup == null) { trainingDataForGroup = Lists.newArrayList(); splitTrainingData.put(groupId, trainingDataForGroup); |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
* Add data to each split data set based on the desired cross data values. Maintain the same ratio of classifications in the split set by * selecting that ratio from outside sets. Only keep the attributes in the supporting instances that are in the white list * */ <<<<<<< HEAD private void crossPollinateData(Map |
Solution content |
---|
* Add data to each split data set based on the desired cross data values. Maintain the same ratio of classifications in the split set by * selecting that ratio from outside sets. Only keep the attributes in the supporting instances that are in the white list * */ private void crossPollinateData(Map |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method signature |
Chunk |
---|
Conflicting content |
---|
for (Integer presentGroup : splitModelGroups.keySet()) { <<<<<<< HEAD List |
Solution content |
---|
for (Integer presentGroup : splitModelGroups.keySet()) { List dataForPresentGroup = splitTrainingData.get(presentGroup); SplitModelGroup splitModelGroup = splitModelGroups.get(presentGroup); Map |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Other |
Chunk |
---|
Conflicting content |
---|
Map |
Solution content |
---|
Map |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Other |
Chunk |
---|
Conflicting content |
---|
} } <<<<<<< HEAD private List |
Solution content |
---|
} } private List filterToRequestedNumber(List input, long requestedNumInstances) { //TODO: consider allowing it to get the most recently dated instances. /** |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method signature |
Chunk |
---|
Conflicting content |
---|
======= * this method obtains a random sublist of approximately m elements from a list of n elements in order m time. */ <<<<<<< HEAD List |
Solution content |
---|
* this method obtains a random sublist of approximately m elements from a list of n elements in order m time. */ List output = new ArrayList<>((int) requestedNumInstances); double currentSizeToReducedSizeRatio = (1.0 * input.size()) / requestedNumInstances; int baseIncrement = (int) Math.floor(currentSizeToReducedSizeRatio); double randomIncrementProbability = currentSizeToReducedSizeRatio - baseIncrement; |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Other |
Chunk |
---|
Conflicting content |
---|
return output; } <<<<<<< HEAD private boolean shouldAddInstance(Serializable attributeValue, T instance, ClassificationCounter crossDataCount, double targetCount) { ======= private boolean shouldAddInstance(Serializable attributeValue, I instance, ClassificationCounter crossDataCount, double targetCount) { >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85 //if the model's split valaue is not the same as the instance's split value (avoids redundancy) if (!attributeValue.equals(instance.getAttributes().get(attributeKey))) { //if we still need instances of a particular classification |
Solution content |
---|
return output; } private boolean shouldAddInstance(Serializable attributeValue, I instance, ClassificationCounter crossDataCount, double targetCount) { //if the model's split valaue is not the same as the instance's split value (avoids redundancy) if (!attributeValue.equals(instance.getAttributes().get(attributeKey))) { //if we still need instances of a particular classification |
File |
---|
SplitOnAttributeClassifierBuilder.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method signature |
Chunk |
---|
Conflicting content |
---|
@Override public Serializable getClassificationByMaxProb(AttributesMap attributes) { Map |
Solution content |
---|
@Override public Serializable getClassificationByMaxProb(AttributesMap attributes) { Map |
File |
---|
RandomDecisionForest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
For statement |
If statement |
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
private void findBestValueForField(String field) { FieldLosses losses = new FieldLosses(); <<<<<<< HEAD FieldValueRecommender fieldValueRecommender = valuesToTest.get(field); ======= FieldValueRecommender fieldValueRecommender = fieldsToOptimize.get(field); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85 if (fieldValueRecommender.getValues().size() == 1) { return; } |
Solution content |
---|
private void findBestValueForField(String field) { FieldLosses losses = new FieldLosses(); FieldValueRecommender fieldValueRecommender = fieldsToOptimize.get(field); if (fieldValueRecommender.getValues().size() == 1) { return; } |
File |
---|
PredictiveModelOptimizer.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
return; } //bestConfig is not actually bestConfig inth for loop <<<<<<< HEAD for (Object value : fieldValueRecommender.getValues()) { //TODO: make so it does not repeat a conf already seen in present iteration (e.g. keep a set of configs) if (bestConfig.get(field).equals(value)) { continue; ======= for (Serializable value : fieldValueRecommender.getValues()) { //TODO: make so it does not repeat a conf already seen in present iteration (e.g. keep a set of configs) if (bestConfig.get(field).equals(value)) { continue; //safe to continue bc everything else about the config is the same. >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85 } bestConfig.put(field, value); losses.addFieldLoss(value, crossValidator.getLossForModel(bestConfig)); |
Solution content |
---|
return; } //bestConfig is not actually bestConfig inth for loop for (Serializable value : fieldValueRecommender.getValues()) { //TODO: make so it does not repeat a conf already seen in present iteration (e.g. keep a set of configs) if (bestConfig.get(field).equals(value)) { continue; //safe to continue bc everything else about the config is the same. } bestConfig.put(field, value); losses.addFieldLoss(value, crossValidator.getLossForModel(bestConfig)); |
File |
---|
PredictiveModelOptimizer.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Comment |
Continue statement |
For statement |
If statement |
Chunk |
---|
Conflicting content |
---|
import org.junit.Test; import quickml.data.AttributesMap; import quickml.data.ClassifierInstance; <<<<<<< HEAD import quickml.supervised.classifier.Classifier; import quickml.supervised.classifier.decisionTree.Scorer; import quickml.supervised.classifier.decisionTree.TreeBuilder; import quickml.supervised.classifier.decisionTree.scorers.GiniImpurityScorer; import quickml.supervised.classifier.decisionTree.scorers.MSEScorer; import quickml.supervised.classifier.decisionTree.scorers.SplitDiffScorer; import quickml.supervised.classifier.decisionTree.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; import quickml.supervised.classifier.randomForest.RandomForestBuilder; ======= import quickml.supervised.tree.decisionTree.scorers.*; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85 import quickml.supervised.crossValidation.ClassifierLossChecker; import quickml.supervised.crossValidation.CrossValidator; import quickml.supervised.crossValidation.data.FoldedData; |
Solution content |
---|
import org.junit.Test; import quickml.data.AttributesMap; import quickml.data.ClassifierInstance; import quickml.supervised.tree.decisionTree.scorers.*; import quickml.supervised.crossValidation.ClassifierLossChecker; import quickml.supervised.crossValidation.CrossValidator; import quickml.supervised.crossValidation.data.FoldedData; |
File |
---|
BenchmarkTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Import |
Chunk |
---|
Conflicting content |
---|
package quickml.supervised.classifier; <<<<<<< HEAD:src/test/java/quickml/supervised/classifier/ClassifiersTest.java import com.beust.jcommander.internal.Sets; ======= >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/test/java/quickml/supervised/classifier/StaticBuildersTest.java import org.javatuples.Pair; import org.slf4j.Logger; import org.slf4j.LoggerFactory; |
Solution content |
---|
package quickml.supervised.classifier; import org.javatuples.Pair; import org.slf4j.Logger; import org.slf4j.LoggerFactory; |
File |
---|
ClassifiersTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Import |
Chunk |
---|
Conflicting content |
---|
import quickml.supervised.classifier.downsampling.DownsamplingClassifier; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; <<<<<<< HEAD:src/test/java/quickml/supervised/classifier/ClassifiersTest.java import java.util.Arrays; ======= import java.io.Serializable; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/test/java/quickml/supervised/classifier/StaticBuildersTest.java import java.util.List; import java.util.Map; import java.util.Set; |
Solution content |
---|
import quickml.supervised.classifier.downsampling.DownsamplingClassifier; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; import java.io.Serializable; import java.util.List; import java.util.Map; |
File |
---|
ClassifiersTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Import |
Chunk |
---|
Conflicting content |
---|
List |
Solution content |
---|
OnespotDateTimeExtractor dateTimeExtractor = new OnespotDateTimeExtractor(); Pair |
File |
---|
ClassifiersTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
import quickml.data.AttributesMap; import quickml.data.ClassifierInstance; import quickml.data.OnespotDateTimeExtractor; <<<<<<< HEAD:src/test/java/quickml/supervised/crossValidation/attributeImportance/AttributeImportanceFinderTest.java import quickml.supervised.InstanceLoader; import quickml.supervised.classifier.Classifier; import quickml.supervised.classifier.decisionTree.Tree; import quickml.supervised.classifier.decisionTree.TreeBuilder; import quickml.supervised.classifier.decisionTree.scorers.GiniImpurityScorer; import quickml.supervised.classifier.decisionTree.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; import quickml.supervised.classifier.randomForest.RandomForestBuilder; import quickml.supervised.crossValidation.ClassifierLossChecker; import quickml.supervised.crossValidation.CrossValidator; import quickml.supervised.crossValidation.data.OutOfTimeData; ======= import quickml.InstanceLoader; >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85:src/test/java/quickml/supervised/crossValidation/attributeImportance/AttributeImportanceFinderIntegrationTest.java import quickml.supervised.crossValidation.lossfunctions.ClassifierLogCVLossFunction; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; import quickml.supervised.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; |
Solution content |
---|
import quickml.data.ClassifierInstance; import quickml.data.OnespotDateTimeExtractor; import quickml.InstanceLoader; import quickml.supervised.crossValidation.lossfunctions.ClassifierLogCVLossFunction; import quickml.supervised.crossValidation.lossfunctions.WeightedAUCCrossValLossFunction; import quickml.supervised.tree.attributeIgnoringStrategies.IgnoreAttributesWithConstantProbability; |
File |
---|
AttributeImportanceFinderIntegrationTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Import |
Chunk |
---|
Conflicting content |
---|
@Test public void testAttributeImportanceFinder() throws Exception { <<<<<<< HEAD:src/test/java/quickml/supervised/crossValidation/attributeImportance/AttributeImportanceFinderTest.java AttributeImportanceFinder |
Solution content |
---|
@Test public void testAttributeImportanceFinder() throws Exception { System.out.println("\n \n \n new attrImportanceTest"); DecisionTreeBuilder |
File |
---|
AttributeImportanceFinderIntegrationTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Other |
Chunk |
---|
Conflicting content |
---|
TreeBuilderTestUtils.serializeDeserialize(downsamplingClassifier); <<<<<<< HEAD:src/test/java/quickml/supervised/classifier/downsampling/DownsamplingClassifierBuilderTest.java RandomForest randomForest = (RandomForest) downsamplingClassifier.wrappedClassifier; final List |
Solution content |
---|
TreeBuilderTestUtils.serializeDeserialize(downsamplingClassifier); RandomDecisionForest randomDecisionForest = (RandomDecisionForest) downsamplingClassifier.wrappedClassifier; final List |
File |
---|
DownsamplingClassifierBuilderTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Cast expression |
Method invocation |
Variable |
Chunk |
---|
Conflicting content |
---|
@Before public void setUp() throws Exception { List |
Solution content |
---|
@Before public void setUp() throws Exception { List |
File |
---|
PredictiveModelOptimizerIntegrationTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Comment |
Chunk |
---|
Conflicting content |
---|
CompositeAttributeIgnoringStrategy compositeAttributeIgnoringStrategy = new CompositeAttributeIgnoringStrategy(Arrays.asList( new IgnoreAttributesWithConstantProbability(0.7), new IgnoreAttributesInSet(attributesToIgnore, probabilityOfDiscardingFromAttributesToIgnore) )); <<<<<<< HEAD config.put(ATTRIBUTE_IGNORING_STRATEGY, new FixedOrderRecommender(new IgnoreAttributesWithConstantProbability(0.7)));//, compositeAttributeIgnoringStrategy )); config.put(NUM_TREES, new MonotonicConvergenceRecommender(asList(8), 0.02)); config.put(MAX_DEPTH, new FixedOrderRecommender(8));//, 16));//Integer.MAX_VALUE, 2, 3, 5, 6, 9)); config.put(MIN_SCORE, new FixedOrderRecommender(0.00000000000001));//, Double.MIN_VALUE, 0.0, 0.000001, 0.0001, 0.001, 0.01, 0.1)); config.put(MIN_OCCURRENCES_OF_ATTRIBUTE_VALUE, new FixedOrderRecommender(11));//;, 16, 30 )); config.put(MIN_LEAF_INSTANCES, new FixedOrderRecommender(20));//, 40)); config.put(SCORER, new FixedOrderRecommender(new GiniImpurityScorer()));//, new InformationGainScorer())), ; config.put(DEGREE_OF_GAIN_RATIO_PENALTY, new FixedOrderRecommender(1.0));//, 0.75, .5 )); config.put(MIN_SPLIT_FRACTION, new FixedOrderRecommender(0.001));// 0.25, .5 )); // config.put(EXEMPT_ATTRIBUTES, new FixedOrderRecommender(exemptAttributes)); config.put(IMBALANCE_PENALTY_POWER, new FixedOrderRecommender(0.0, 1.0, 2.0)); ======= config.put(ATTRIBUTE_IGNORING_STRATEGY.name(), new FixedOrderRecommender(new IgnoreAttributesWithConstantProbability(0.7), compositeAttributeIgnoringStrategy )); config.put(NUM_TREES.name(), new MonotonicConvergenceRecommender(asList(20))); config.put(MAX_DEPTH.name(), new FixedOrderRecommender( 4, 8, 16));//Integer.MAX_VALUE, 2, 3, 5, 6, 9)); config.put(MIN_SCORE.name(), new FixedOrderRecommender(0.00000000000001));//, Double.MIN_VALUE, 0.0, 0.000001, 0.0001, 0.001, 0.01, 0.1)); config.put(ATTRIBUTE_VALUE_THRESHOLD_OBSERVATIONS.name(), new FixedOrderRecommender(2, 11, 16, 30 )); config.put(MIN_LEAF_INSTANCES.name(), new FixedOrderRecommender(0, 20, 40)); config.put(SCORER_FACTORY.name(), new FixedOrderRecommender(new PenalizedInformationGainScorerFactory(), new GRPenalizedGiniImpurityScorerFactory())); config.put(DEGREE_OF_GAIN_RATIO_PENALTY.name(), new FixedOrderRecommender(1.0, 0.75, .5 )); >>>>>>> c2055cd661cf137ba3afd871fd67808f375d2b85 return config; } |
Solution content |
---|
CompositeAttributeIgnoringStrategy compositeAttributeIgnoringStrategy = new CompositeAttributeIgnoringStrategy(Arrays.asList( new IgnoreAttributesWithConstantProbability(0.7), new IgnoreAttributesInSet(attributesToIgnore, probabilityOfDiscardingFromAttributesToIgnore) )); config.put(ATTRIBUTE_IGNORING_STRATEGY.name(), new FixedOrderRecommender(new IgnoreAttributesWithConstantProbability(0.7), compositeAttributeIgnoringStrategy )); config.put(NUM_TREES.name(), new MonotonicConvergenceRecommender(asList(20))); config.put(MAX_DEPTH.name(), new FixedOrderRecommender( 4, 8, 16));//Integer.MAX_VALUE, 2, 3, 5, 6, 9)); config.put(MIN_SCORE.name(), new FixedOrderRecommender(0.00000000000001));//, Double.MIN_VALUE, 0.0, 0.000001, 0.0001, 0.001, 0.01, 0.1)); config.put(ATTRIBUTE_VALUE_THRESHOLD_OBSERVATIONS.name(), new FixedOrderRecommender(2, 11, 16, 30 )); config.put(MIN_LEAF_INSTANCES.name(), new FixedOrderRecommender(0, 20, 40)); config.put(SCORER_FACTORY.name(), new FixedOrderRecommender(new PenalizedInformationGainScorerFactory(), new GRPenalizedGiniImpurityScorerFactory())); config.put(DEGREE_OF_GAIN_RATIO_PENALTY.name(), new FixedOrderRecommender(1.0, 0.75, .5 )); return config; } |
File |
---|
PredictiveModelOptimizerIntegrationTest.java |
Developer's decision |
---|
Version 2 |
Kind of conflict |
---|
Comment |
Method invocation |